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ARCHITECTURE FOR RUNNING

CONVOLUTIONAL NETWORKS ON

MEMORY AND MIPS CONSTRAINED

EMBEDDED DEVICES

FIELD OF THE DISCLOSURE

This document pertains generally, but not by way of

limitation, to executing convolutional neural networks

(CNNs) on embedded devices.

BACKGROUND

A convolutional neural network (CNN) is a class of neural

network that is applied for applications on images or videos.

The basic block of a CNN is called a convolutional block.

The weights or configurable parameters for this block, like

all other neural network blocks, are tuned during a process

of learning called back propagation. Neural networks usu-

ally have many layers. These layers are stacked and such an

architecture or arrangement of layers with a large number of

layers is called a ‘deep’ network. Such layers are responsible

for the effectiveness of convolutional networks in many

applications.

SUMMARY

In some aspects, a method is provided for configuring a
deep neural network (DNN) to run on a resource constrained
embedded device that includes: accessing DNN information
including definition of layers and weights of the DNN;
obtaining cache or memory information for one or more
cache or memory levels of the resource constrained embed-
ded device; configuring the DNN to be loaded onto the one
or more cache or memory levels of the resource constrained
embedded device based on the cache or memory information
and the DNN information; selecting, based on the cache or
memory information, between a plurality of DNN process-
ing schemes for loading the DNN information and data onto
the resource constrained embedded device, wherein a first of
the plurality of DNN processing schemes causes a sub-
portion of one of the layers interleaved with the weights and
data to be loaded onto a single cache or memory level of the
one or more cache or memory levels, and wherein a second
of the plurality of DNN processing schemes causes a com-
plete channel corresponding to the layers and the weights
and data to be loaded onto the single cache or memory level;
and selecting, based on the layers of the DNN, a convolution
technique from a plurality of convolution techniques.

In some aspects, the weights of the DNN are floating point
weights, further comprising converting the floating point
weights to variable length quantized fixed point weights
based on a processing capability of the resource constrained
embedded device.

In some aspects, the method includes computing a statis-
tical metric of a range of the floating point weights; and
determining a quantization factor for converting the floating
point weights to the variable quantized fixed point weights
based on the statistical metric.

In some aspects, the method includes identifying a float-
ing point weight that includes a fractional component and
integer component; and dividing the identified floating point
weight by an integer to remove the integer component to
improve rounding operations.

In some aspects, the method includes generating a con-
figuration file that merges a layer and model graph structure

of the DNN and the weights per each of the layers of the
DNN; and encrypting the configuration file.

In some aspects, accessing the DNN information com-
prises obtaining the configuration file and decrypting the
configuration file.

In some aspects, the cache information comprises size
information of a level 1 cache and level 2 cache of the
resource constrained embedded device, and the memory
information comprises a level 3 cache associated with the
resource constrained embedded device.

In some aspects, the method includes computing a first
size corresponding to a first subset of rows and columns of
the data across all of the layers; and in response to deter-
mining that the first size fits within a level 1 cache of the
resource constrained embedded device, selecting the first of
the plurality of DNN processing schemes to process the first
subset of the rows and columns across all of the layers.

In some aspects, the method includes causing a second
subset of rows and columns of the data across all of the
layers to be read into the level 1 cache while the first subset
is being processed; and processing the second subset of the
rows and columns based on an output of processing the first
subset of the rows and columns.

In some aspects, the first and second subsets of the rows
are stored in a circular buffer.

In some aspects, the method includes, in response to
determining that the first size exceeds a size of the level 1
cache, computing a second size corresponding to an entire
row for a subset of columns of the data across a first layer
of the layers; and in response to determining that the second
size fits within a level 1 cache of the resource constrained
embedded device, selecting the second of the plurality of
DNN processing schemes.

In some aspects, the method includes storing in the level
1 cache an intermediate output of processing the entire row
for the subset of columns of the data across the first layer of
the layers; and causing the entire row for the subset of
columns of the data across a second layer of the layers to be
combined with the intermediate output.

In some aspects, a system for configuring a DNN to run
on a resource constrained embedded device includes: a
processor configured to perform operations comprising:
accessing DNN information including definition of layers
and weights of the DNN; obtaining cache or memory
information for one or more cache or memory levels of the
resource constrained embedded device; configuring the
DNN to be loaded onto the one or more cache or memory
levels of the resource constrained embedded device based on
the cache or memory information and the DNN information;
selecting, based on the cache or memory information,
between a plurality of DNN processing schemes for loading
the DNN information and data onto the resource constrained
embedded device, wherein a first of the plurality of DNN
processing schemes causes a sub-portion (less than all) of
one of the layers interleaved with the weights and data to be
loaded onto a single cache or memory level of the one or
more cache or memory levels, and wherein a second of the
plurality of DNN processing schemes causes a complete
channel corresponding to the layers and the weights and data
to be loaded onto the single cache or memory level; and
selecting, based on the layers of the DNN, a convolution
technique from a plurality of convolution techniques.

In some aspects, the weights of the DNN are floating point
weights, further comprising converting the floating point
weights to quantized fixed point weights based on a pro-
cessing capability of the resource constrained embedded
device.
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In some aspects, the operations further comprise comput-

ing a statistical metric of a range of the floating point

weights; and determining a quantization factor for convert-
ing the floating point weights to the quantized fixed point
weights based on the statistical metric.

In some aspects, the operations further comprise identi-
fying a floating point weight that includes a fractional
component and integer component; and dividing the iden-
tified floating point weight by an integer to remove the
integer component to improve rounding operations.

In some aspects, a non-transitory computer readable
medium storing non-transitory computer readable instruc-
tions to configure one or more processors to perform opera-
tions for configuring a DNN to run on a resource constrained
embedded device includes: accessing DNN information
including definition of layers and weights of the DNN;
obtaining cache or memory information for one or more
cache or memory levels of the resource constrained embed-
ded device; configuring the DNN to be loaded onto the one
or more cache or memory levels of the resource constrained
embedded device based on the cache or memory information
and the DNN information; selecting, based on the cache or
memory information, between a plurality of DNN process-
ing schemes for loading the DNN information and data onto
the resource constrained embedded device, wherein a first of
the plurality of DNN processing schemes causes a sub-
portion of one of the layers interleaved with the weights and
data to be loaded onto a single cache or memory level of the
one or more cache or memory levels, and wherein a second
of the plurality of DNN processing schemes causes a com-
plete channel corresponding to the layers and the weights
and data to be loaded onto the single cache or memory level;
and selecting, based on the layers of the DNN, a convolution
technique from a plurality of convolution techniques.

In some aspects, the weights of the DNN are floating point
weights, further comprising converting the floating point
weights to quantized fixed point weights based on a pro-
cessing capability of the resource constrained embedded
device.

In some aspects, the operations further comprise: com-
puting a statistical metric of a range of the floating point
weights; and determining a quantization factor for convert-
ing the floating point weights to the quantized fixed point
weights based on the statistical metric.

In some aspects, the operations further comprise: identi-
fying a floating point weight that includes a fractional
component and integer component; and dividing the iden-
tified floating point weight by an integer to remove the
integer component to improve rounding operations.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components in different
views. Like numerals having different letter suffixes may
represent different instances of similar components. The
drawings illustrate generally, by way of example, but not by
way of limitation, various embodiments discussed in the
present document.

FIG. 1 is a block diagram of a system for performing
CNNs on embedded devices, in accordance with various
embodiments.

FIG. 2 is a block diagram of an interleaved processing
scheme, in accordance with various embodiments.

FIGS. 3A-C are block diagrams of a non-interleaved
processing scheme, in accordance with various embodi-
ments.

FIG. 4 is a flow diagram depicting example process for

performing CNNs on embedded devices, in accordance with

various embodiments.
FIG. 5 is a block diagram illustrating an example of a

machine upon which one or more embodiments may be
implemented.

DETAILED DESCRIPTION

This disclosure describes, among other things, techniques
to perform CNNs on embedded devices to enable fast and
efficient pre-processing of images, received from an over-
head camera (such as a fisheye lens) for detecting objects
(such as humans), on embedded devices, and for enabling
fast and efficient post-processing detection and tracking of
the detected objects on the embedded devices.

Neural networks usually have many layers, typically one
or more input layers, one or more output layers, and inter-
mediate layers (called hidden layers). These layers are
stacked; namely the output of one layer is input to the next
layer. This architecture or arrangement of layers with a large
number of layers is called a ‘deep’ network. Some of the
popular deep neural networks include ResNet (which
includes 152 layers), VGGNet (which includes 34 layers),
and Googlenet (which includes 27 layers). These hidden
layers are responsible for the effectiveness of convolutional
networks in many applications.

Typically, each layer includes three dimensions: two
spatial dimensions (e.g., height and width) and one dimen-
sion representing the number of channels. For example, a
color input image of size 640×480 (VGA size) can be
received. Since this is a color image, the image is repre-
sented as three channels of Red, Blue, and Green, and the
dimensions for this image can be represented as 640×480×3.
A greyscale image may have only one channel and conse-
quently, a VGA image of the same size has dimensions
640×480×1.

Typically, deep networks have a large number of chan-
nels, which helps with the performance and improves the
effectiveness. If there exist 12 filters for convolution in layer
n−1, that means the next layer n will have 12 channels.
Usually the number of filter channels or depth grows by an
order of two across layers. The result is an increase in the
filter depth and, correspondingly, the memory requirements.
In an example, an input layer may be of size 220 pixels×220
pixels×512 channels. For a single 3×3 convolution opera-
tion, the operator is needed that is of dimension 3×3×512 for
a single filter. For a complete filtering, there will be a total
of 220×220×3×3×512 multiplications for one filter. If there
exist 1024 filters for this layer, the total operations will be
∼ 220×220×3×3×512*2014∼ 449 million multiply and accu-
mulate operations (MACs) for one layer alone.

Such a complexity makes it difficult to implement and
inefficient to operate and run deep convolutional networks
on typical embedded devices. This is because the embedded
devices are typically constrained in terms of memory as well
as processing power, which limits their ability to quickly and
efficiently process large convolution operations.

The disclosed embodiments provide a mechanism to
quickly and efficiently operate and run CNNs on embedded
devices. Specifically, disclosed is an optimized software
architecture that has the following components: 1) a tool to
convert floating point weights to quantized fixed point
weights; 2) a parser tool to generate a binary configuration
file; and 3) a framework that determines how to efficiently
perform forward pass operations by optimizing memory use
and schemes.
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In some embodiments, a tool to convert floating point
weights to quantized fixed point weights is provided. DNNs
usually run with floating point precision to maintain higher
accuracy, which makes it a challenge to run on fixed point
embedded processors. Usually, fixed point Multiply and
Accumulate operations are supported in hardware with a
minimal overhead but this is not the case for floating point
precision. Hence, to run these networks on a fixed point
processor, all the operations are converted to fixed point by
converting the weights to fixed point without significantly or
adversely impacting the accuracy.

According to the disclosed embodiments, the tool per-
forms a statistical analysis of the range of weights per each
layer and determines the ideal or optimal quantization factor
that preserves the most precision in 8 bit or 16 bit fixed
point. To make rounding optimal, the desired weight quan-
tized format is 0.15 or Q 0.15 (e.g., no integer bit, 1 bit for
sign, and 15 bits for the fractional part). This choice is
governed by the fact that, in some embedded devices, as the
system directly stores from the accumulator register to a
register, the number is automatically shifted by 16 bits. As
such, having the weight format at Q.15 avoids shift opera-
tions after convolution and keeps the input and output to a
convolution layer in the same Q format after convolution.

If the spread of the values of the weights allows to select
this particular Q format, a division factor is added to modify
the existing weights to make the quantized format 0.15. For
example, if the actual maximum weight is −3.9 and such a
weight needs to be represented in the 0.15 format, the weight
is divided by four to make it fully fractional (e.g., −3.9/4=−
0.975). Then the weight can be represented using only
fractional bits. Making this fully fractional makes the round-
ing operation more efficient on embedded processors or
devices. The correction factor can be multiplied to the MAC
output (e.g., four times) in this case, since this will be
common across elements. The disclosed tool captures the
ideal or optimized quantization format per layer and stores
this for use in the configuration file.

In some embodiments, a parser tool to generate a binary
configuration file is provided. The software framework is
generalized with support for building blocks like convolu-
tion and pooling, among others. The structure of the network
is usually captured in the architecture or model of the
network, which is like a graph that defines the interconnec-
tions as well as the layers and type of layers (e.g., Layer 0
is convolution, Layer 1 is Pooling) and the trained weights
that give the best results. The trained weights are the ideal
set of parameters that are obtained after training using the
training data (e.g., training images) to give the best perfor-
mance. The disclosed parser tool receives the architecture
and the weights as inputs and combines them in a defined
format that can be easily read by the software framework.
The output of the parser tool is a binary file that merges the
layer/model graph structure and the weights per layer. The
advantage of using a binary format includes the ability to
encrypt the binary file using any of the known encryption
schemes; maintain data integrity using cyclic redundancy
codes (CRC) and other protection schemes; directly read the
buffer and assign to an internal buffer without any need for
parsing this data. The weights can be assigned to an internal
buffer without any parsing in the framework.

In some embodiments, a framework that determines how
to efficiently perform forward pass operations by optimizing
memory use and schemes is provided. An embedded pro-
cessor is usually constrained in two aspects: memory and
processing capabilities. The disclosed techniques resolve the
processing limitations by converting the models to fixed

point near equivalents. Ensuring that that the memory (and

specifically the memory hierarchy) is efficiently used is also

addressed by the disclosed embodiments.

There are many types of memories and memory hierar-

chies on the embedded devices or processors: L1 (level 1

cache), which is on chip memory and gives the fastest

read/write access of typically 1 cycle; L2 (level 2 cache),

which is also on chip but usually slower to access; and L3

(level 3 cache), this is the off chip memory, which is much

slower to read/write. Specifically, in computer architecture,

the memory hierarchy separates computer storage into a

hierarchy based on response time. Since response time,

complexity, and capacity are related, the levels of the

hierarchy may also be distinguished by their performance

and controlling technologies. Memory hierarchy affects per-

formance in computer architectural design, algorithm pre-

dictions, and lower level programming constructs involving

locality of reference.

Designing for high performance requires considering the

restrictions of the memory hierarchy, i.e. the size and

capabilities of each component. Each of the various com-
ponents can be viewed as part of a hierarchy of memories
(m1, m2, . . . , mn) in which each member mi is typically
smaller and faster than the next highest member mi+1 of the
hierarchy. To limit waiting by higher levels, a lower level
will respond by filling a buffer and then signaling for
activating the transfer. Some levels of the hierarchy of the
memory are implemented and form part of the embedded
device or processor while others are outside of the embed-
ded device or processor. As referred to herein, “levels” of
memory and the memory hierarchy include any one or
combination of processor registers, Level 0 (L0) Micro
operations cache (e.g., 6 KiB in size), Level 1 (L1) Instruc-
tion cache (e.g., 128 KiB in size), Level 1 (L1) Data cache
(e.g., 128 KiB in size), Level 2 (L2) Instruction and data
(shared) (e.g., 1 MiB in size), Level 3 (L3) Shared cache
(e.g., 6 MiB in size), Level 4 (L4) Shared cache (e.g., 128
MiB in size), Main memory (Primary storage)(e.g., giga-
bytes in size), Disk storage (Secondary storage) (e.g., Tera-
bytes in size).

For CNNs used for image processing, the common opera-
tion is the convolution operation. This operation involves a
multiplication in three dimensions (width, height and depth).
Common deep learning frameworks like Tensorflow opti-
mize this by converting this three-dimensional (3D) multi-
plication to a two-dimensional (2D) multiplication opera-
tion. To perform 2D multiplication for a 3D image, the 3D
array needs to be converted to a 2D array, which can be
performed according to an operation referred to as im2row
(e.g., convert from a block of a 3D image to a row of a
matrix). Usually there is some overlap in the elements
between two successive convolution operations, and im2row
replicates the elements regardless of any overlap, which
wastes memory.

The disclosed embodiments provide three different DNN
processing schemes to handle this data (e.g., 3D image data).
An interleaved scheme is one in which the weights are stored
in an interleaved manner. For example, for an RGB image,
the values are stored as R0, G0, B0, R1, G1, B1 . . . R640,
G640, B640 (where R0 represents the red pixel value at the
0 position, R1 represents the red pixel value at the 1 position,
and so forth; where G0 represents the green pixel value at
the 0 position, G1 represents the green pixel value at the 1
position, and so forth; and where B0 represents the blue
pixel value at the 0 position, B1 represents the blue pixel
value at the 1 position, and so forth).
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This allows the resource constrained devices to perform a
2D direct memory access (DMA) instead of a 3D DMA.
Specifically, for a 3×3×3 convolution or 3 rows×3 col-
umns×3 channels, the devices can read DMA in three
complete rows or part of rows of images along with the
interleaved channels. So for a 640×480×3 image, the device
is configured to read 640×3 rows×3 channels number of
pixels. Such data can fit in L1 memory and can be processed
in a single cycle or 0.5 cycle per multiplication. Doing a
3×3×3 convolution on this data provides 640 outputs for the
rows in L1 memory. Also, since the device has all the
columns for the rows present in L1, the device can process
this data faster for all the rows. While this data is being
processed in the foreground, 1 extra row of the input can be
read in and can make use of the two rows that are repeated
for the next operation. This makes memory transfer opera-
tions from L3 to L1 optimal. To enable this transfer, circular
buffering is used so the three rows can be in any sequential
order.

Another scheme that is disclosed is a non-interleaved
scheme. The above interleaving scheme may work in a
majority of cases. However, as the number of channels
grows, it becomes increasingly more difficult to fit all the
channels needed in L1 buffers. For example, if the data
includes 20×15×512 layers for a 3×3×512 convolution, the
device will need around 3 rows×512 channels×20 columns
in the interleaved scheme (∼ 20 KB), which may not be
possible to fit in an L1 buffer, memory, or cache. In such
cases, the disclosed non-interleaved scheme is provided.

For these layers, the device stores the data in a non-
interleaved manner where one complete channel is read in at
a time. For this example, the device will DMA in 20×15
pixels of 1 channel in and perform one channel of operations
on this data. The intermediate output is stored and the next
channel of 20×15 pixels is read in. This is added to the
intermediate output from a previous channel, which ensures
efficient use of the memory.

Another scheme that is disclosed is a 1×1 non-interleaved
scheme. 1×1 convolutions are an important tool in reducing
dimensionality of deep networks. They work by keeping the
spatial dimensions (width and height) unchanged but
increasing the depth of the layer. A typical scenario for
operating on such data is with spatial dimensions being very
small (for example, 20×15), but with large channels (for
example, 512). Using the non-interleaved scheme for this
data arrangement is usually inefficient since each channel of
a 1×1 filter is only one element. So, the 1×1 non-interleaved
scheme is provided to make this operation more efficient. In
this scheme, the device reads in all the channels of as many
spatial pixels as allowed by memory size and then performs
the convolution operation on the channels read in.

The software architecture analyzes the memory available
on the device and then chooses how many spatial pixels can
fit in this memory and initializes the buffers and DMA
descriptors accordingly.

The disclosed embodiments perform configuration based
on the memory present in the chosen device. The disclosed
embodiments choose which of the memory management
schemes will suit the layers and generates a configuration
that determines how each layer has to be processed. Since in
some cases there may be a need to switch between inter-
leaved formats and non-interleaved formats, the disclosed
architecture also determines how the output of each layer
has to be stored in the various levels of memory on the
embedded device.

FIG. 1 is a block diagram of a system 100 for configuring
a DNN to run on a resource constrained embedded device,

in accordance with various embodiments. The system 100
includes a DNN information module 110, an embedded
device information module 120, and a DNN processing
scheme selection module 130.

The system 100 performs operations comprising: access-
ing DNN information including definition of layers and
weights of the DNN; obtaining cache or memory informa-
tion for one or more cache or memory levels of the resource
constrained embedded device; configuring the DNN to be
loaded onto the one or more cache or memory levels of the
resource constrained embedded device based on the cache or
memory information and the DNN information; selecting,
based on the cache or memory information, between a
plurality of DNN processing schemes for loading the DNN
information and data onto the resource constrained embed-
ded device, wherein a first of the plurality of DNN process-
ing schemes causes a sub-portion of one of the layers
interleaved with the weights and data to be loaded onto a
single cache or memory level of the one or more cache or
memory levels, and wherein a second of the plurality of
DNN processing schemes causes a complete channel corre-
sponding to the layers and the weights and data to be loaded
onto the single cache or memory level; and selecting, based
on the layers of the DNN, a convolution technique from a
plurality of convolution techniques.

Specifically, the DNN information module 110 obtains
weights and one or more layers of the DNN. The DNN
information module 110 performs a statistical analysis of the
range of weights per each layer. The DNN information
module 110 determines an optimal quantization factor that
preserves the most precision in 8 bit or 16 bit fixed point for
the weights. For example, the weights may initially be
received in floating point format and the DNN information
module 110 converts the weights to fixed point format to
reduce the storage requirements and improve the overall
efficiency and speed at which the weights are processed. To
optimize the conversion, the DNN information module 110
selects or computes a quantization factor that will result in
the least amount of precision loss when converting from the
floating point to the fixed point format.

An example of the DNN information module 110 choos-
ing a quantization factor to preserve maximum efficiency for
a 16 bit size will now be discussed. Specifically, the DNN
information module 110 may determine that a given data set
includes a particular weight range from +31.3 to −23.6. In
such circumstances, the DNN information module 110
selects only 5 bits to represent the integers (as additional bits
would be wasted given that 5 bits can represent a maximum
value of 32), 1 bit for the sign (in the range −32 to +31), and
the remaining 10 bits for the fractional part. This results in
a quantization factor of Q5.10.

Conversely, the DNN information module 110 does not
choose to have 8 bits for integers for a quantization factor of
Q7.8 because doing so wastes 2 bits that would not be used
to represent any point in the received data that is limited in
values to a maximum of 32. Similarly, taking a quantization
factor of Q.12 would ensure that there would be an insuf-
ficient number of integer bits to accurately depict the integer
part. In some cases, the DNN information module 110
determines that there exists a weight range from +0.99 to
−0.99. In such cases, the DNN information module 110
determines that there is no bit required for the integer part
and can have a quantization factor of Q0.15 with 1 bit for
sign and 15 bits for the fractional part. By not allocating any
bits to representing the integer component of a data point,
the DNN information module 110 ensures maximum preci-
sion in the weights is preserved. In this manner, the DNN
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information module 110 does an analysis on a range of
inferencing and data points, finds out the maximum input
and output range, their variances, average and then decides
on the Q factor that can optimally represent the data set. In
some cases, the DNN information module 110 allocates a
Q8.8 format for input and output and Q1.15 for the weights
and the scale factor. Namely, the weights can be quantized
using one factor and the input/output data can be quantized
using another factor.

In some embodiments, to make rounding optimal, the
desired weight quantized format is 0.15 or Q 0.15 (e.g., the
weights are quantized or represented by 16 bits). Any other
suitable quantization format can be utilized in other imple-
mentations. In an example, the quantization format of 0.15
represents each weight without an integer bit and includes 1
bit representing the sign or polarity of the weight and the
remaining 15 bits for the fractional portion of the weight.
This choice is governed by the fact that, in some embedded
devices, the system directly stores from the accumulator
register to a register half and the number is automatically
shifted by 16 bits. As such, having the weight format at Q.15
avoids shift operations after convolution and keeps the input
and output to a convolution layer in the same Q format after
convolution.

In some embodiments, the DNN information module 110
determines if the spread of values of weights enables the
selection of a Q.15 format. If so, the DNN information
module 110 adds a division factor to modify the existing
weights to make the quantized format 0.15. For example, if
the actual maximum weight is −3.9 and such a weight needs
to be represented in the 0.15 format, the DNN information
module 110 divides the weight by four to make it fully
fractional (e.g., −3.9/4=−0.975). Namely, the DNN infor-
mation module 110 searches all the weights of the DNN to
identify those weights that include an integer component. If
a weight includes an integer component, the DNN informa-
tion module 110 factors out the integer component to enable
the weight to be represented in the Q15 format where no bits
are used to represent integers. Once the integer component
is found for a given weight, the DNN information module
110 divides the weight by the value of the rounded up integer
to remove the integer component. Namely, the DNN infor-
mation module 110 rounds the weight up to the next highest
integer and then divides the weight by the rounded up
integer. At this point, the weight can be represented using
only fractional bits. In some cases, making weights fully
fractional makes the rounding operation more efficient on
embedded processors or devices.

The DNN information module 110 stores, in association
with each weight, the corresponding division factor as a
correction factor in a configuration file that includes the
adjusted weights and the layers of the DNN. This correction
factor can be multiplied by the MAC output to recover the
original weight value. For example, if the original weight
was −3.9 and the correction factor is 4, the embedded
processor obtains the correction factor after applying the
fractional weight to the data to produce an output weighted
data. The embedded processor then multiplies the result of
the weighted data by the correction factor. Namely, the
embedded processor accesses the configuration file and
obtains the correction factor for the weight associated with
a current layer of the DNN being processed. Based on the
correction factor, after performing the fractional MAC
operation on a given set of data for the current layer, the
MAC or embedded processor multiplies the output of the
MAC generated based on the fractional weight by the
associated correction factor.

The DNN information module 110 compiles or generates
a configuration file that represents the DNN (the weights and
the layers) that includes the quantized weights and the
associated correction factors. The DNN information module
110 computes a graph that defines the interconnections of
layers and the types of layers (e.g., whether a layer is a
convolution or a pooling layer). The DNN information
module 110 associates the quantized weights with each
layer. The DNN information module 110 receives the DNN
architecture (the graph defining the layers) and the quantized
weights as inputs and combines them in a defined format.
The DNN information module 110 outputs the combination
as a binary configuration file. In some cases, the DNN
information module 110 encrypts the configuration file and
adds various error correction codes (ECCs) (ECC or cyclic-
redundancy-code (CRC)) to the configuration file. This
maintains data integrity using CRC and other protection
schemes.

The configuration file can be provided to an embedded
device information module 120. The embedded device infor-
mation module 120 can be included in the same device or
system as the DNN information module 110 or can be
included in an entirely different and separate hardware
component or device. In some cases, the embedded device
information module 120 obtains the configuration file and
decrypts the configuration file and decodes the decrypted file
using the associated ECC or CRC. This plain text configu-
ration file can now be processed by the embedded device
information module 120 to configure the DNN represented
by the configuration file to operate on an embedded device.

As an example, the embedded device information module
120 receives an embedded device target information. For
example, the embedded device information module 120 can
receive user input that specifies the type of embedded device
(including the type of processing units and MAC available
on the device) and memory information associated with the
embedded device (e.g., the size of the level 1 cache, the size
of the level 2 cache, the size and availability of the level 3
cache, and/or various other memory components associated
with the embedded device). In some cases, the embedded
device information module 120 receives an identifier of the
target processor on which the DNN associated with the
configuration file will be run. The embedded device infor-
mation module 120 accesses local or remote databases and
searches the local or remote databases based on the identifier
of the target processor to obtain the type of the embedded
device and the memory information associated with the
embedded device. The embedded device information mod-
ule 120 provides the device type and memory information to
the DNN processing scheme selection module 130.

The DNN processing scheme selection module 130 con-
figures the DNN to run on the target embedded device by
selecting between a plurality of DNN processing schemes.
Specifically, the DNN processing scheme selection module
130 receives data to be processed by the embedded device
and determines the layout of the data. Based on the DNN
layers specified by the configuration file, the DNN process-
ing scheme selection module 130 selects an efficient way to
load the data and the DNN onto the embedded processor to
apply the DNN to the data. In some cases, the DNN
processing scheme selection module 130 selects the way in
which to load the data so that as much data as possible can
be included in the level 1 cache of the embedded device and
processed by the DNN to reduce the latency associated with
moving data between various memory levels.

In one example, the DNN processing scheme selection
module 130 retrieves the data. The DNN processing scheme
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selection module 130 computes a first size corresponding to

a first subset of rows and columns of the data across all of

the layers. In response to determining that the first size fits

within a level 1 cache of the embedded device, the DNN

processing scheme selection module 130 selects the first of

the plurality of DNN processing schemes (e.g., an inter-

leaved scheme in which a sub-portion (less than all) of one

of the layers is interleaved with the weights and data loaded

onto a single cache or memory level of the one or more

cache or memory levels) to process the first subset of the

rows and columns across all of the layers. In this case, the

DNN processing scheme selection module 130 causes a

second subset of rows and columns of the data across all of

the layers to be read into the level 1 cache while the first

subset is being processed. The embedded device processes

the second subset of the rows and columns based on an

output of processing the first subset of the rows and col-

umns. In some cases, the first and second subsets of the rows

are stored in a circular buffer.

The DNN processing scheme selection module 130 deter-

mines that the first size exceeds a size of the level 1 cache
and, in response, computes a second size corresponding to
an entire row for a subset of columns of the data across a first
layer of the layers. In response to determining that the
second size fits within a level 1 cache of the resource
constrained embedded device, the DNN processing scheme
selection module 130 selects the second of the plurality of
DNN processing schemes (e.g., a non-interleaved scheme in
which a complete channel corresponding to the layers and
the weights and data is loaded onto the single cache or
memory level). In this case, the DNN processing scheme
selection module 130 stores in the level 1 cache an inter-
mediate output of processing the entire row for the subset of
columns of the data across the first layer of the layers and
causes the entire row for the subset of columns of the data
across a second layer of the layers to be combined with the
intermediate output.

The DNN processing scheme selection module 130 also
selects the convolution technique to process the data (e.g., a
convolution or a pooling operation) based on the given layer
that is loaded onto the embedded device.

FIG. 2 is a block diagram 200 of an interleaved processing
scheme, in accordance with various embodiments. DNN
processing scheme selection module 130 computes a size for
a set of data 210 that includes a portion of rows and columns
and for all of the channels (c). The size of the set of data 210
is determined to be smaller than the size of the level 1 cache
of the embedded device. As such, the set of data 210 is
provided and loaded with the weight associated with the
layers of the DNN to generate a data object 220. The data
object is processed by the embedded device to generate a
single output pixel 230. While the single output pixel 230 is
generated, the DNN processing scheme selection module
130 causes a second portion of the rows and columns for all
of the channels to be loaded with the same weight using
another data object. After the second portion is processed to
generate another output pixel, the two pixels are combined.

Once the set of weights is combined with all the pixels in
the input, the next set of weights can be loaded. The process
is repeated with the next set of weights again with all the
pixels of the input. For example, consider an input image of
size 640×480×3. If a 3×3×3 convolution with 8 filters, for
example, is performed on this input image, initially the 1st

channel of 8 filters of size 3×3×3 is loaded, which will be
combined with the entire input of 640×480×3. Once this is
done, the second set of filters out of 8 filters is loaded, which

is again applied on the entire input of 640×480×3. This is
repeated for all of the remaining of 8 filters.

For example, for an RGB image, the values are stored as
R0, G0, B0, R1, G1, B1 . . . R640, G640, B640 (where R0
represents the red pixel value at the 0 position, R1 represents
the red pixel value at the 1 position, and so forth; where G0
represents the green pixel value at the 0 position, G1
represents the green pixel value at the 1 position, and so
forth; and where B0 represents the blue pixel value at the 0
position, B1 represents the blue pixel value at the 1 position,
and so forth). For a 3×3×3 convolution or 3 rows×3 col-
umns×3 channels, the embedded device can read in three
complete rows or part of rows of images along with the
interleaved channels. So for a 640×480×3 image, the embed-
ded device is configured to read 640×3 rows×3 channels
number of pixels as the data object 220. Such data can fit in
L1 memory and can be processed in a single cycle or 0.5
cycle per multiplication. Doing a 3×3×3 convolution on this
data provides 640 outputs for the rows in L1 memory. Also,
since the embedded device has all the columns for the rows
present in L1, the device can process this data faster for all
the rows. While this data is being processed in the fore-
ground and if stride is 1 (as is the most common use case),
1 extra row of the input can be read in and can make use of
the two rows that are repeated for the next operation.

As an example, for the first iteration, rows 0, 1, and 2 of
the image are processed with the 3×3 filter. Since this is
interleaved, the total data that will be moved in can include
3 channels*3 rows*640 pixels in 1 row. For the second
output row, if stride is 1 (as is usually common), rows 1, 2,
and 3 are processed. Since rows 1 and 2 are already in
memory, only the extra row 3 needs to be retrieved and
loaded using DMA. So for this iteration, rows 1, 2, and 3 of
the input image are processed and the data to be moved in
will be 3 channels*1 row*640 pixels in 1 row. For the next
output row, rows 2, 3, and 4 are needed and since rows 2 and
3 are already in memory, only the 4th row needs to be
retrieved and loaded into L1 memory.

FIGS. 3A-C are block diagrams 300 of a non-interleaved
processing scheme, in accordance with various embodi-
ments. The DNN processing scheme selection module 130
computes a size of the data set 310 that includes a portion of
the row and columns for a single channel of the input data.
The DNN processing scheme selection module 130 can
make this computation if the computation of the size result-
ing from a portion of the rows and columns across all of the
channels is too large or exceeds the size of the level 1 cache
of the embedded device. In this case, the DNN processing
scheme selection module 130 determines that the size of the
set 310 that includes a portion of the row and columns for
a single channel is smaller than the size of the level 1 cache.
In response, the DNN processing scheme selection module
130 obtains the portion of the row and columns for a single
channel and generates a data object 320 that includes the
weight associated with the layer of the DNN for the portion
of the row and columns for the single channel.

The embedded device applies the convolution operation
on the data object 320 to generate intermediate data 330 that
includes an entire row of output pixels for a single channel.
This intermediate data 330 is kept in the level 1 cache or
level 2 cache of the embedded processor. As shown in FIG.
3B, in a subsequent iteration, a second set of data 312 that
includes an adjacent portion of the row and columns for the
same single channel of the input data is retrieved. In
response, the DNN processing scheme selection module 130
obtains the second set of data 312 and generates a second
data object 322 that includes the weight associated with the
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layer of the DNN for the portion of the row and columns for
the single channel. The embedded device applies the con-
volution operation on the data object 322 to generate inter-
mediate data 332 that includes another entire row of output
pixels for the single channel. The embedded device com-
bines the two intermediate data 330 and 332.

As shown in FIG. 3C, in a subsequent iteration, a third set
of data 314 that includes an adjacent portion of the row and
columns for a second single channel of the input data is
retrieved. In response, the DNN processing scheme selection
module 130 obtains the third set of data 314 and generates
a third data object 324 that includes the weight associated
with the layer of the DNN for the portion of the row and
columns for the second single channel. The embedded
device applies the convolution operation on the data object
322 to generate intermediate data 334 that includes another
entire row of output pixels for the second single channel.
The embedded device combines the intermediate data 334
with the previously combined two intermediate data 330 and
332 to generate a row of pixels 336.

For example, if the data includes a 20×15×512 layers for
a 3×3×512 convolution, the device will need around 3
rows*512 channels*20 columns in the interleaved scheme
(∼ 20 KB), which may not be possible to fit in L1 buffer,
memory, or cache. In such cases, the device stores the data
in a non-interleaved manner where one complete channel is
read in (or DMA) at a time. For this example, the device will
read in 20×15 pixels of 1 channel and perform one channel
of operations on this data. The intermediate output is stored
and the next channel of 20×15 pixels is read in. This is added
to the intermediate output from previous channel. This
ensures efficient use of the memory.

In some cases, DNN processing scheme selection module
130 selects a 1×1 non-interleaved scheme, which keeps the
spatial dimensions (width and height) unchanged but
increases the depth of the layer. In this scheme, the device
reads in all the channels of as many spatial pixels as allowed
by memory and then performs the convolution operation on
them. Specifically, similar to the interleaved scheme, the
DNN processing scheme selection module 130 obtains a
single row and a single column of pixels for all of the
channels. If the size of this data object is smaller than the
size of the level 1 cache, the DNN processing scheme
selection module 130 then adds another row and another
column to the data object for all of the channels. If the size
of this data object is smaller than the size of the level 1
cache, the DNN processing scheme selection module 130
continues to add additional rows and columns to the data
object for all of the channels until the size is larger than the
level 1 cache. At this point, the DNN processing scheme
selection module 130 removes the added rows and columns
and uses the revised data object that includes a certain
number of rows and columns for all the channels for loading
into the level 1 cache with the weight of the layer.

Generally, it is seen that in DNN, as the number of layers
increases, the spatial dimension reduces while the channel
dimension grows. For example, if the initial layer is 640×
480×3 for the first layer, this will go down to 20×15×1024
by the fifth layer. For the interleaved scheme, all the chan-
nels of the pixel are needed to get the output pixel. For a 3×3
convolution for the 1st row, all 3 channels are needed for
each of the pixels along with 3 rows and 640 pixels in each
row. This consumes an amount of a memory corresponding
to 640×3×3=5760 pixels. For a 3×3 convolution for the fifth
row, following the same method, 1024 channels×3 rows×20
rows per pixel are needed. This consumes an amount of a
memory corresponding to 20×1024×3=61400 pixels. It can

be seen that the dominant dimension is usually that of the
channel dimension. As such, the DNN processing scheme
selection module 130 lays out the memory in a non-inter-
leaved manner, so all channels are laid out separately in a
planar way. In that case, only 1 channel of the input image
needs to be retrieved and loaded at a time. So, in the fifth row
case, only 20×15 pixels need to be retrieved and loaded,
which can include only 300 pixels. Correspondingly, the first
channel of the 3×3 filter would be combined with this to
generate the intermediate output. Then the next channel of
20×15 pixels from second filter out of 1024 filters would be
loaded and combined with the second 3×3 filter and added
to the previous intermediate output. This would be repeated
for all 1024 channels to give the final output for one filter.
The notable difference between the two interleaved schemes
is in the way memory is laid out. In some cases, the memory
is laid out and hence loaded as pixels of all input channels
first and then spatial. In some cases, the input pixels are
loaded into internal memory as spatial first, followed tem-
porally by channels.

FIG. 4 is a flow diagram depicting example process 400
for configuring a DNN to run on a resource constrained
embedded device. in accordance with various embodiments.
The operations of the process 400 may be performed in
parallel or in a different sequence, or may be entirely
omitted. In some embodiments, some or all of the operations
of the process 400 may be embodied on a computer-readable
medium and executed by one or more processors.

At operation 410, the system 100 accesses DNN infor-
mation including definition of layers and weights of the
DNN.

At operation 420, the system 100 obtains cache or
memory information for one or more cache or memory
levels of the resource constrained embedded device.

At operation 430, the system 100 configures the DNN to
be loaded onto the one or more cache or memory levels of
the resource constrained embedded device based on the
cache or memory information and the DNN information.

At operation 440, the system 100 selects, based on the
cache or memory information, between a plurality of DNN
processing schemes for loading the DNN information and
data onto the resource constrained embedded device. A first
of the plurality of DNN processing schemes causes a sub-
portion of one of the layers interleaved with the weights and
data to be loaded onto a single cache or memory level of the
one or more cache or memory levels. A second of the
plurality of DNN processing schemes causes a complete
channel corresponding to the layers and the weights and data
to be loaded onto the single cache or memory level.

At operation 450, the system 100 selects, based on the
layers of the DNN, a convolution technique from a plurality
of convolution techniques. For example, multiple types of
convolution hardware devices (each implementing a differ-
ent convolution technique, such as Transposed Convolution
(Deconvolution, checkerboard artifacts), Dilated Convolu-
tion (Atrous Convolution), Separable Convolution (Spa-
tially Separable Convolution, Depthwise Convolution), and/
or Flattened Convolution) can be implemented on an
embedded device. In such cases, the most efficient convo-
lution technique is determined for processing the DNN
layers and the associated one of the convolution hardware
devices is instructed to process the DNN layers. In some
cases, the embedded device may only implement a particular
convolution technique on dedicated hardware devices and in
such cases, the DNN is configured to be processed efficiently
by the available convolution technique. In some cases, the
embedded device may not include any dedicated circuitry
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for performing convolution operations. In such instances,
the most efficient convolution technique implemented in
software is selected to be performed by the embedded device
to process the DNN layers.

FIG. 5 is a block diagram of an example machine 500
upon which any one or more of the techniques (e.g., meth-
odologies) discussed herein may be performed. In alterna-
tive embodiments, the machine 500 may operate as a stand-
alone device or may be connected (e.g., networked) to other
machines. In a networked deployment, the machine 500 may
operate in the capacity of a server machine, a client machine,
or both in server-client network environments. In an
example, the machine 500 may act as a peer machine in a
peer-to-peer (P2P) (or other distributed) network environ-
ment. The machine 500 may be a personal computer (PC),
a tablet PC, a set-top box (STB), a personal digital assistant
(PDA), a mobile telephone, a web appliance, an Internet of
Things (IoT) device, an automotive system, an aerospace
system, or any machine capable of executing instructions
(sequential or otherwise) that specify actions to be taken by
that machine. Further, while only a single machine is illus-
trated, the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein, such as via
cloud computing, software as a service (SaaS), or other
computer cluster configurations.

Examples, as described herein, may include, or may
operate by, logic, components, devices, packages, or mecha-
nisms. Circuitry is a collection (e.g., set) of circuits imple-
mented in tangible entities that include hardware (e.g.,
simple circuits, gates, logic, etc.). Circuitry membership
may be flexible over time and underlying hardware vari-
ability. Circuitries include members that may, alone or in
combination, perform specific tasks when operating. In an
example, hardware of the circuitry may be immutably
designed to carry out a specific operation (e.g., hardwired).
In an example, the hardware of the circuitry may include
variably connected physical components (e.g., execution
units, transistors, simple circuits, etc.) including a computer-
readable medium physically modified (e.g., magnetically,
electrically, by moveable placement of invariant-massed
particles, etc.) to encode instructions of the specific opera-
tion. In connecting the physical components, the underlying
electrical properties of a hardware constituent are changed,
for example, from an insulator to a conductor or vice versa.
The instructions enable participating hardware (e.g., the
execution units or a loading mechanism) to create members
of the circuitry in hardware via the variable connections to
carry out portions of the specific tasks when in operation.
Accordingly, the computer-readable medium is communi-
catively coupled to the other components of the circuitry
when the device is operating. In an example, any of the
physical components may be used in more than one member
of more than one circuitry. For example, under operation,
execution units may be used in a first circuit of a first
circuitry at one point in time and reused by a second circuit
in the first circuitry, or by a third circuit in a second circuitry,
at a different time.

The machine (e.g., computer system) 500 may include a
hardware processor 502 (e.g., a central processing unit
(CPU), a graphics processing unit (GPU), a hardware pro-
cessor core, or any combination thereof, such as a memory
controller, etc.), a main memory 504, and a static memory
506, some or all of which may communicate with each other
via an interlink (e.g., bus) 508. The machine 500 may further
include a display device 510, an alphanumeric input device

512 (e.g., a keyboard), and a user interface (UI) navigation
device 514 (e.g., a mouse). In an example, the display device
510, alphanumeric input device 512, and UI navigation
device 514 may be a touchscreen display. The machine 500
may additionally include a storage device 522 (e.g., drive
unit); a signal generation device 518 (e.g., a speaker); a
network interface device 520; one or more sensors 516, such
as a Global Positioning System (GPS) sensor, wing sensors,
mechanical device sensors, temperature sensors, ICP sen-
sors, bridge sensors, audio sensors, industrial sensors, a
compass, an accelerometer, or other sensors; and one or
more system-in-package data acquisition devices 590. The
machine 500 may include an output controller 528, such as
a serial (e.g., universal serial bus (USB)), parallel, or other
wired or wireless (e.g., infrared (IR), near field communi-
cation (NFC), etc.) connection to communicate with or
control one or more peripheral devices (e.g., a printer, card
reader, etc.).

The storage device 522 may include a machine-readable
medium on which is stored one or more sets of data
structures or instructions 524 (e.g., software) embodying or
utilized by any one or more of the techniques or functions
described herein. The instructions 524 may also reside,
completely or at least partially, within the main memory 504,
within the static memory 506, or within the hardware
processor 502 during execution thereof by the machine 500.
In an example, one or any combination of the hardware
processor 502, the main memory 504, the static memory
506, or a storage device may constitute the machine-read-
able medium.

While the machine-readable medium is illustrated as a
single medium, the term “machine-readable medium” may
include a single medium or multiple media (e.g., a central-
ized or distributed database, or associated caches and serv-
ers) configured to store the one or more instructions 524.

The term “machine-readable medium” may include any
transitory or non-transitory medium that is capable of stor-
ing, encoding, or carrying transitory or non-transitory
instructions for execution by the machine 500 and that cause
the machine 500 to perform any one or more of the tech-
niques of the present disclosure, or that is capable of storing,
encoding, or carrying data structures used by or associated
with such instructions. Non-limiting machine-readable
medium examples may include solid-state memories, and
optical and magnetic media. In an example, a massed
machine-readable medium comprises a machine-readable
medium with a plurality of particles having invariant (e.g.,
rest) mass. Accordingly, massed machine-readable media
are not transitory propagating signals. Specific examples of
massed machine-readable media may include non-volatile
memory, such as semiconductor memory devices (e.g.,
Electrically Programmable Read-Only Memory (EPROM),
Electrically Erasable Programmable Read-Only Memory
(EEPROM)) and flash memory devices; magnetic disks,
such as internal hard disks and removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

The instructions 524 (e.g., software, programs, an oper-
ating system (OS), etc.) or other data that are stored on the
storage device 521 can be accessed by the main memory 504
for use by the hardware processor 502. The main memory
504 (e.g., DRAM) is typically fast, but volatile, and thus a
different type of storage from the storage device 521 (e.g.,
an SSD), which is suitable for long-term storage, including
while in an “off” condition. The instructions 524 or data in
use by a user or the machine 500 are typically loaded in the
main memory 504 for use by the hardware processor 502.
When the main memory 504 is full, virtual space from the
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storage device 521 can be allocated to supplement the main
memory 504; however, because the storage device 521 is
typically slower than the main memory 504, and write
speeds are typically at least twice as slow as read speeds, use
of virtual memory can greatly reduce user experience due to
storage device latency (in contrast to the main memory 504,
e.g., DRAM). Further, use of the storage device 521 for
virtual memory can greatly reduce the usable lifespan of the
storage device 521.

The instructions 524 may further be transmitted or
received over a communications network 526 using a trans-
mission medium via the network interface device 520 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transfer
protocol (HTTP), etc.). Example communication networks
may include a local area network (LAN), a wide area
network (WAN), a packet data network (e.g., the Internet),
mobile telephone networks (e.g., cellular networks), Plain
Old Telephone Service (POTS) networks, and wireless data
networks (e.g., Institute of Electrical and Electronics Engi-
neers (IEEE) 802.11 family of standards known as Wi-Fi®,
IEEE 802.16 family of standards known as WiMax®, IEEE
802.15.4 family of standards, peer-to-peer (P2P) networks),
among others. In an example, the network interface device
520 may include one or more physical jacks (e.g., Ethernet,
coaxial, or phone jacks) or one or more antennas to connect
to the communications network 526. In an example, the
network interface device 520 may include a plurality of
antennas to wirelessly communicate using at least one of
single-input multiple-output (SIMO), multiple-input mul-
tiple-output (MIMO), or multiple-input single-output
(MISO) techniques. The term “transmission medium” shall
be taken to include any tangible or intangible medium that
is capable of storing, encoding, or carrying instructions for
execution by the machine 500, and includes digital or analog
communications signals or other tangible or intangible
media to facilitate communication of such software.

Each of the non-limiting aspects or examples described
herein may stand on its own, or may be combined in various
permutations or combinations with one or more of the other
examples.

The above detailed description includes references to the
accompanying drawings, which form a part of the detailed
description. The drawings show, by way of illustration,
specific embodiments in which the inventive subject matter
may be practiced. These embodiments are also referred to
herein as “examples.” Such examples may include elements
in addition to those shown or described. However, the
present inventors also contemplate examples in which only
those elements shown or described are provided. Moreover,
the present inventors also contemplate examples using any
combination or permutation of those elements shown or
described (or one or more aspects thereof), either with
respect to a particular example (or one or more aspects
thereof), or with respect to other examples (or one or more
aspects thereof) shown or described herein.

In the event of inconsistent usages between this document
and any documents so incorporated by reference, the usage
in this document controls.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In this document, the terms “including”

and “in which” are used as the plain-English equivalents of
the respective terms “comprising” and “wherein.” Also, in
the following aspects, the terms “including” and “compris-
ing” are open-ended; that is, a system, device, article,
composition, formulation, or process that includes elements
in addition to those listed after such a term in a aspect are
still deemed to fall within the scope of that aspect. Moreover,
in the following aspects, the terms “first,” “second,” “third,”
etc. are used merely as labels, and are not intended to impose
numerical requirements on their objects.

Method examples described herein may be machine- or
computer-implemented at least in part. Some examples may
include a computer-readable medium or machine-readable
medium encoded with transitory or non-transitory instruc-
tions operable to configure an electronic device to perform
methods as described in the above examples. An implemen-
tation of such methods may include code, such as micro-
code, assembly-language code, a higher-level-language
code, or the like. Such code may include transitory or
non-transitory computer-readable instructions for perform-
ing various methods. The code may form portions of com-
puter program products. Further, in an example, the code
may be tangibly stored on one or more volatile, non-
transitory, or non-volatile tangible computer-readable
media, such as during execution or at other times. Examples
of these tangible computer-readable media may include, but
are not limited to, hard disks, removable magnetic disks,
removable optical disks (e.g., compact discs and digital
video discs), magnetic cassettes, memory cards or sticks,
random access memories (RAMs), read-only memories
(ROMs), and the like.

The above description is intended to be illustrative, and
not restrictive. For example, the above-described examples
(or one or more aspects thereof) may be used in combination
with each other. Other embodiments may be used, such as by
one of ordinary skill in the art upon reviewing the above
description. The Abstract is provided to comply with 37
C.F.R. § 1.72(b), to allow the reader to quickly ascertain the
nature of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the
scope or meaning of the aspects. Also, in the above detailed
description, various features may be grouped together to
streamline the disclosure. This should not be interpreted as
intending that an unclaimed disclosed feature is essential to
any aspect. Rather, inventive subject matter may lie in less
than all features of a particular disclosed embodiment. Thus,
the following claims are hereby incorporated into the
detailed description as examples or embodiments, with each
claim standing on its own as a separate embodiment, and it
is contemplated that such embodiments may be combined
with each other in various combinations or permutations.
The scope of the inventive subject matter should be deter-
mined with reference to the appended claims, along with the
full scope of equivalents to which such claims are entitled.

What is claimed is:
1. A method for configuring a deep neural network (DNN)

to run on a resource constrained embedded device, the
method comprising:

accessing DNN information including definition of layers
and weights of the DNN;

obtaining cache or memory information for one or more
cache or memory levels of the resource constrained
embedded device;

configuring the DNN to be loaded onto the one or more
cache or memory levels of the resource constrained
embedded device based on the cache or memory infor-
mation and the DNN information;
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adjusting one or more weights of the DNN by a division

factor;

storing, in a configuration file in association with each of

the one or more weights, a correction factor corre-

sponding to the division factor used to adjust the one or

more weights of the DNN;

selecting, based on the cache or memory information,

between a plurality of DNN processing schemes for

loading the DNN information and data onto the

resource constrained embedded device, wherein a first

of the plurality of DNN processing schemes causes a

sub-portion of one of the layers interleaved with the

weights and data to be loaded onto a single cache or

memory level of the one or more cache or memory

levels, and wherein a second of the plurality of DNN

processing schemes causes a complete channel corre-

sponding to the layers and the weights and data to be

loaded onto the single cache or memory level, wherein

selecting the first of the plurality of DNN processing

schemes comprises:

computing a first size corresponding to a first subset of

rows and columns of the data across all of the layers;

determining that the first size fits within a level 1 cache

of the resource constrained embedded device;

causing a second subset of rows and columns of the

data across all of the layers to be read into the level

1 cache while the first subset is being processed; and

processing the second subset of the rows and columns

based on an output of processing the first subset of

the rows and columns, wherein one extra row of a set

of data is retrieved from a level 3 cache into the level

1 cache and makes use of two rows that are repeated

for a next iteration;

selecting, based on the layers of the DNN, a convolution

technique from a plurality of convolution techniques;

processing a given set of data based on the DNN by

applying the adjusted one or more weights comprising

one or more fractional weights to the given set of data

to produce output weighted data;

retrieving the configuration file to obtain the correction

factor corresponding to the division factor used to

adjust the one or more weights of the DNN; and

multiplying the output weighted data by the correction

factor to recover a result corresponding to one or more

original weight values of the DNN.

2. The method of claim 1, wherein the weights of the

DNN are floating point weights, further comprising convert-

ing the floating point weights to variable length quantized

fixed point weights based on a processing capability of the

resource constrained embedded device, wherein the one or

more weights of the DNN are quantized using one factor and

the set of data is quantized using another factor.

3. The method of claim 2, further comprising:

computing a statistical metric of a range of the floating

point weights; and

determining a quantization factor for converting the float-

ing point weights to the variable quantized fixed point

weights based on the statistical metric.

4. The method of claim 3, further comprising:

identifying a floating point weight that includes a frac-

tional component and integer component; and
dividing the identified floating point weight by an integer

to remove the integer component to improve rounding
operations.

5. The method of claim 1, further comprising:

generating the configuration file that merges a layer and

model graph structure of the DNN and the weights per

each of the layers of the DNN; and

encrypting the configuration file.

6. The method of claim 5, wherein accessing the DNN

information comprising obtaining the configuration file and

decrypting the configuration file.

7. The method of claim 1, wherein the cache information

comprises size information of a level 1 cache and level 2

cache of the resource constrained embedded device; and

wherein the memory information comprises a level 3

cache associated with the resource constrained embed-

ded device.

8. The method of claim 1, wherein the first and second

subsets of the rows are stored in a circular buffer.

9. The method of claim 1, further comprising:

in response to determining that the first size exceeds a size

of the level 1 cache, computing a second size corre-

sponding to an entire row for a subset of columns of the

data across a first layer of the layers; and
in response to determining that the second size fits within

a level 1 cache of the resource constrained embedded
device, selecting the second of the plurality of DNN
processing schemes.

10. The method of claim 1, further comprising:
storing in the level 1 cache an intermediate output of

processing an entire row for the subset of columns of
the data across the first layer of the layers; and

causing the entire row for the subset of columns of the
data across a second layer of the layers to be combined
with the intermediate output.

11. A system for configuring a deep neural network
(DNN) to run on a resource constrained embedded device,
the system comprising:

at least one processor configured to perform operations
comprising:

accessing DNN information including definition of layers
and weights of the DNN;

obtaining cache or memory information for one or more
cache or memory levels of the resource constrained
embedded device;

configuring the DNN to be loaded onto the one or more
cache or memory levels of the resource constrained
embedded device based on the cache or memory infor-
mation and the DNN information;

adjusting one or more weights of the DNN by a division
factor;

storing, in a configuration file in association with each of
the one or more weights, a correction factor corre-
sponding to the division factor used to adjust the one or
more weights of the DNN;

selecting, based on the cache or memory information,
between a plurality of DNN processing schemes for
loading the DNN information and data onto the
resource constrained embedded device, wherein a first
of the plurality of DNN processing schemes causes a
sub-portion of one of the layers interleaved with the
weights and data to be loaded onto a single cache or
memory level of the one or more cache or memory
levels, and wherein a second of the plurality of DNN
processing schemes causes a complete channel corre-
sponding to the layers and the weights and data to be
loaded onto the single cache or memory level, wherein
selecting the first of the plurality of DNN processing
schemes comprises:
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computing a first size corresponding to a first subset of

rows and columns of the data across all of the layers;

determining that the first size fits within a level 1 cache

of the resource constrained embedded device;

causing a second subset of rows and columns of the
data across all of the layers to be read into the level
1 cache while the first subset is being processed; and

processing the second subset of the rows and columns
based on an output of processing the first subset of
the rows and columns, wherein one extra row of a set
of data is retrieved from a level 3 cache into the level
1 cache and makes use of two rows that are repeated
for a next iteration;

selecting, based on the layers of the DNN, a convolution
technique from a plurality of convolution techniques;

processing a given set of data based on the DNN by
applying the adjusted one or more weights comprising
one or more fractional weights to the given set of data
to produce output weighted data;

retrieving the configuration file to obtain the correction
factor corresponding to the division factor used to
adjust the one or more weights of the DNN; and

multiplying the output weighted data by the correction
factor to recover a result corresponding to one or more
original weight values of the DNN.

12. The system of claim 11, wherein the weights of the
DNN are floating point weights, further comprising convert-
ing the floating point weights to quantized fixed point
weights based on a processing capability of the resource
constrained embedded device.

13. The system of claim 12, wherein the operations further
comprise:

computing a statistical metric of a range of the floating
point weights; and

determining a quantization factor for converting the float-
ing point weights to the quantized fixed point weights
based on the statistical metric.

14. The system of claim 13, wherein the operations further
comprise:

identifying a floating point weight that includes a frac-
tional component and integer component; and

dividing the identified floating point weight by an integer
to remove the integer component to improve rounding
operations.

15. A non-transitory computer readable medium storing
non-transitory computer readable instructions to configure
one or more processors to perform operations for configur-
ing a deep neural network (DNN) to run on a resource
constrained embedded device, the operations comprising:

accessing DNN information including definition of layers
and weights of the DNN;

obtaining cache or memory information for one or more
cache or memory levels of the resource constrained
embedded device;

configuring the DNN to be loaded onto the one or more
cache or memory levels of the resource constrained
embedded device based on the cache or memory infor-
mation and the DNN information;

adjusting one or more weights of the DNN by a division
factor;

storing, in a configuration file in association with each of
the one or more weights, a correction factor corre-

sponding to the division factor used to adjust the one or
more weights of the DNN;

selecting, based on the cache or memory information,
between a plurality of DNN processing schemes for
loading the DNN information and data onto the
resource constrained embedded device, wherein a first
of the plurality of DNN processing schemes causes a
sub-portion of one of the layers interleaved with the
weights and data to be loaded onto a single cache or
memory level of the one or more cache or memory
levels, and wherein a second of the plurality of DNN
processing schemes causes a complete channel corre-
sponding to the layers and the weights and data to be
loaded onto the single cache or memory level, wherein
selecting the first of the plurality of DNN processing
schemes comprises:
computing a first size corresponding to a first subset of

rows and columns of the data across all of the layers;
determining that the first size fits within a level 1 cache

of the resource constrained embedded device;
causing a second subset of rows and columns of the

data across all of the layers to be read into the level
1 cache while the first subset is being processed; and

processing the second subset of the rows and columns
based on an output of processing the first subset of
the rows and columns, wherein one extra row of a set
of data is retrieved from a level 3 cache into the level
1 cache and makes use of two rows that are repeated
for a next iteration;

selecting, based on the layers of the DNN, a convolution
technique from a plurality of convolution techniques;

processing a given set of data based on the DNN by
applying the adjusted one or more weights comprising
one or more fractional weights to the given set of data
to produce output weighted data;

retrieving the configuration file to obtain the correction
factor corresponding to the division factor used to
adjust the one or more weights of the DNN; and

multiplying the output weighted data by the correction
factor to recover a result corresponding to one or more
original weight values of the DNN.

16. The non-transitory computer readable medium of
claim 15, wherein the weights of the DNN are floating point
weights, further comprising converting the floating point
weights to quantized fixed point weights based on a pro-
cessing capability of the resource constrained embedded
device.

17. The non-transitory computer readable medium of
claim 16, wherein the operations further comprise:

computing a statistical metric of a range of the floating
point weights; and

determining a quantization factor for converting the float-
ing point weights to the quantized fixed point weights
based on the statistical metric.

18. The non-transitory computer readable medium of
claim 17, wherein the operations further comprise:

identifying a floating point weight that includes a frac-
tional component and integer component; and

dividing the identified floating point weight by an integer
to remove the integer component to improve rounding
operations.
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